DP-600 Actual Exam Questions

Last updated on Jan. 20, 2025.
Vendor:Microsoft
Exam Code:DP-600
Exam Name:Implementing Analytics Solutions Using Microsoft Fabric
Exam Questions:169
 

Topic 1 - Exam A

Question #1 Topic 1

Case study -
This is a case study. Case studies are not timed separately. You can use as much exam time as you would like to complete each case. However, there may be additional case studies and sections on this exam. You must manage your time to ensure that you are able to complete all questions included on this exam in the time provided.
To answer the questions included in a case study, you will need to reference information that is provided in the case study. Case studies might contain exhibits and other resources that provide more information about the scenario that is described in the case study. Each question is independent of the other questions in this case study.
At the end of this case study, a review screen will appear. This screen allows you to review your answers and to make changes before you move to the next section of the exam. After you begin a new section, you cannot return to this section.

To start the case study -
To display the first question in this case study, click the Next button. Use the buttons in the left pane to explore the content of the case study before you answer the questions. Clicking these buttons displays information such as business requirements, existing environment, and problem statements. If the case study has an All Information tab, note that the information displayed is identical to the information displayed on the subsequent tabs. When you are ready to answer a question, click the Question button to return to the question.

Overview -
Contoso, Ltd. is a US-based health supplements company. Contoso has two divisions named Sales and Research. The Sales division contains two departments named Online Sales and Retail Sales. The Research division assigns internally developed product lines to individual teams of researchers and analysts.

Existing Environment -

Identity Environment -
Contoso has a Microsoft Entra tenant named contoso.com. The tenant contains two groups named ResearchReviewersGroup1 and ResearchReviewersGroup2.

Data Environment -
Contoso has the following data environment:
The Sales division uses a Microsoft Power BI Premium capacity.
The semantic model of the Online Sales department includes a fact table named Orders that uses Import made. In the system of origin, the OrderID value represents the sequence in which orders are created.
The Research department uses an on-premises, third-party data warehousing product.
Fabric is enabled for contoso.com.
An Azure Data Lake Storage Gen2 storage account named storage1 contains Research division data for a product line named Productline1. The data is in the delta format.
A Data Lake Storage Gen2 storage account named storage2 contains Research division data for a product line named Productline2. The data is in the CSV format.

Requirements -

Planned Changes -
Contoso plans to make the following changes:
Enable support for Fabric in the Power BI Premium capacity used by the Sales division.
Make all the data for the Sales division and the Research division available in Fabric.
For the Research division, create two Fabric workspaces named Productline1ws and Productine2ws.
In Productline1ws, create a lakehouse named Lakehouse1.
In Lakehouse1, create a shortcut to storage1 named ResearchProduct.

Data Analytics Requirements -
Contoso identifies the following data analytics requirements:
All the workspaces for the Sales division and the Research division must support all Fabric experiences.
The Research division workspaces must use a dedicated, on-demand capacity that has per-minute billing.
The Research division workspaces must be grouped together logically to support OneLake data hub filtering based on the department name.
For the Research division workspaces, the members of ResearchReviewersGroup1 must be able to read lakehouse and warehouse data and shortcuts by using SQL endpoints.
For the Research division workspaces, the members of ResearchReviewersGroup2 must be able to read lakehouse data by using Lakehouse explorer.
All the semantic models and reports for the Research division must use version control that supports branching.

Data Preparation Requirements -
Contoso identifies the following data preparation requirements:
The Research division data for Productline1 must be retrieved from Lakehouse1 by using Fabric notebooks.
All the Research division data in the lakehouses must be presented as managed tables in Lakehouse explorer.

Semantic Model Requirements -
Contoso identifies the following requirements for implementing and managing semantic models:
The number of rows added to the Orders table during refreshes must be minimized.
The semantic models in the Research division workspaces must use Direct Lake mode.

General Requirements -
Contoso identifies the following high-level requirements that must be considered for all solutions:
Follow the principle of least privilege when applicable.
Minimize implementation and maintenance effort when possible.
You need to ensure that Contoso can use version control to meet the data analytics requirements and the general requirements.
What should you do?

  • A. Store at the semantic models and reports in Data Lake Gen2 storage.
  • B. Modify the settings of the Research workspaces to use a GitHub repository.
  • C. Modify the settings of the Research division workspaces to use an Azure Repos repository.
  • D. Store all the semantic models and reports in Microsoft OneDrive.
Reveal Solution Hide Solution   Discussion   34

Correct Answer: C 🗳️

Question #2 Topic 1

HOTSPOT -

Case study -
This is a case study. Case studies are not timed separately. You can use as much exam time as you would like to complete each case. However, there may be additional case studies and sections on this exam. You must manage your time to ensure that you are able to complete all questions included on this exam in the time provided.
To answer the questions included in a case study, you will need to reference information that is provided in the case study. Case studies might contain exhibits and other resources that provide more information about the scenario that is described in the case study. Each question is independent of the other questions in this case study.
At the end of this case study, a review screen will appear. This screen allows you to review your answers and to make changes before you move to the next section of the exam. After you begin a new section, you cannot return to this section.

To start the case study -
To display the first question in this case study, click the Next button. Use the buttons in the left pane to explore the content of the case study before you answer the questions. Clicking these buttons displays information such as business requirements, existing environment, and problem statements. If the case study has an All Information tab, note that the information displayed is identical to the information displayed on the subsequent tabs. When you are ready to answer a question, click the Question button to return to the question.

Overview -
Contoso, Ltd. is a US-based health supplements company. Contoso has two divisions named Sales and Research. The Sales division contains two departments named Online Sales and Retail Sales. The Research division assigns internally developed product lines to individual teams of researchers and analysts.

Existing Environment -

Identity Environment -
Contoso has a Microsoft Entra tenant named contoso.com. The tenant contains two groups named ResearchReviewersGroup1 and ResearchReviewersGroup2.

Data Environment -
Contoso has the following data environment:
The Sales division uses a Microsoft Power BI Premium capacity.
The semantic model of the Online Sales department includes a fact table named Orders that uses Import made. In the system of origin, the OrderID value represents the sequence in which orders are created.
The Research department uses an on-premises, third-party data warehousing product.
Fabric is enabled for contoso.com.
An Azure Data Lake Storage Gen2 storage account named storage1 contains Research division data for a product line named Productline1. The data is in the delta format.
A Data Lake Storage Gen2 storage account named storage2 contains Research division data for a product line named Productline2. The data is in the CSV format.

Requirements -

Planned Changes -
Contoso plans to make the following changes:
Enable support for Fabric in the Power BI Premium capacity used by the Sales division.
Make all the data for the Sales division and the Research division available in Fabric.
For the Research division, create two Fabric workspaces named Productline1ws and Productine2ws.
In Productline1ws, create a lakehouse named Lakehouse1.
In Lakehouse1, create a shortcut to storage1 named ResearchProduct.

Data Analytics Requirements -
Contoso identifies the following data analytics requirements:
All the workspaces for the Sales division and the Research division must support all Fabric experiences.
The Research division workspaces must use a dedicated, on-demand capacity that has per-minute billing.
The Research division workspaces must be grouped together logically to support OneLake data hub filtering based on the department name.
For the Research division workspaces, the members of ResearchReviewersGroup1 must be able to read lakehouse and warehouse data and shortcuts by using SQL endpoints.
For the Research division workspaces, the members of ResearchReviewersGroup2 must be able to read lakehouse data by using Lakehouse explorer.
All the semantic models and reports for the Research division must use version control that supports branching.

Data Preparation Requirements -
Contoso identifies the following data preparation requirements:
The Research division data for Productline1 must be retrieved from Lakehouse1 by using Fabric notebooks.
All the Research division data in the lakehouses must be presented as managed tables in Lakehouse explorer.

Semantic Model Requirements -
Contoso identifies the following requirements for implementing and managing semantic models:
The number of rows added to the Orders table during refreshes must be minimized.
The semantic models in the Research division workspaces must use Direct Lake mode.

General Requirements -
Contoso identifies the following high-level requirements that must be considered for all solutions:
Follow the principle of least privilege when applicable.
Minimize implementation and maintenance effort when possible.
You need to recommend a solution to group the Research division workspaces.
What should you include in the recommendation? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.

Reveal Solution Hide Solution   Discussion   23

Correct Answer:

Question #3 Topic 1

Case study -
This is a case study. Case studies are not timed separately. You can use as much exam time as you would like to complete each case. However, there may be additional case studies and sections on this exam. You must manage your time to ensure that you are able to complete all questions included on this exam in the time provided.
To answer the questions included in a case study, you will need to reference information that is provided in the case study. Case studies might contain exhibits and other resources that provide more information about the scenario that is described in the case study. Each question is independent of the other questions in this case study.
At the end of this case study, a review screen will appear. This screen allows you to review your answers and to make changes before you move to the next section of the exam. After you begin a new section, you cannot return to this section.

To start the case study -
To display the first question in this case study, click the Next button. Use the buttons in the left pane to explore the content of the case study before you answer the questions. Clicking these buttons displays information such as business requirements, existing environment, and problem statements. If the case study has an All Information tab, note that the information displayed is identical to the information displayed on the subsequent tabs. When you are ready to answer a question, click the Question button to return to the question.

Overview -
Contoso, Ltd. is a US-based health supplements company. Contoso has two divisions named Sales and Research. The Sales division contains two departments named Online Sales and Retail Sales. The Research division assigns internally developed product lines to individual teams of researchers and analysts.

Existing Environment -

Identity Environment -
Contoso has a Microsoft Entra tenant named contoso.com. The tenant contains two groups named ResearchReviewersGroup1 and ResearchReviewersGroup2.

Data Environment -
Contoso has the following data environment:
The Sales division uses a Microsoft Power BI Premium capacity.
The semantic model of the Online Sales department includes a fact table named Orders that uses Import made. In the system of origin, the OrderID value represents the sequence in which orders are created.
The Research department uses an on-premises, third-party data warehousing product.
Fabric is enabled for contoso.com.
An Azure Data Lake Storage Gen2 storage account named storage1 contains Research division data for a product line named Productline1. The data is in the delta format.
A Data Lake Storage Gen2 storage account named storage2 contains Research division data for a product line named Productline2. The data is in the CSV format.

Requirements -

Planned Changes -
Contoso plans to make the following changes:
Enable support for Fabric in the Power BI Premium capacity used by the Sales division.
Make all the data for the Sales division and the Research division available in Fabric.
For the Research division, create two Fabric workspaces named Productline1ws and Productine2ws.
In Productline1ws, create a lakehouse named Lakehouse1.
In Lakehouse1, create a shortcut to storage1 named ResearchProduct.

Data Analytics Requirements -
Contoso identifies the following data analytics requirements:
All the workspaces for the Sales division and the Research division must support all Fabric experiences.
The Research division workspaces must use a dedicated, on-demand capacity that has per-minute billing.
The Research division workspaces must be grouped together logically to support OneLake data hub filtering based on the department name.
For the Research division workspaces, the members of ResearchReviewersGroup1 must be able to read lakehouse and warehouse data and shortcuts by using SQL endpoints.
For the Research division workspaces, the members of ResearchReviewersGroup2 must be able to read lakehouse data by using Lakehouse explorer.
All the semantic models and reports for the Research division must use version control that supports branching.

Data Preparation Requirements -
Contoso identifies the following data preparation requirements:
The Research division data for Productline1 must be retrieved from Lakehouse1 by using Fabric notebooks.
All the Research division data in the lakehouses must be presented as managed tables in Lakehouse explorer.

Semantic Model Requirements -
Contoso identifies the following requirements for implementing and managing semantic models:
The number of rows added to the Orders table during refreshes must be minimized.
The semantic models in the Research division workspaces must use Direct Lake mode.

General Requirements -
Contoso identifies the following high-level requirements that must be considered for all solutions:
Follow the principle of least privilege when applicable.
Minimize implementation and maintenance effort when possible.
You need to refresh the Orders table of the Online Sales department. The solution must meet the semantic model requirements.
What should you include in the solution?

  • A. an Azure Data Factory pipeline that executes a Stored procedure activity to retrieve the maximum value of the OrderID column in the destination lakehouse
  • B. an Azure Data Factory pipeline that executes a Stored procedure activity to retrieve the minimum value of the OrderID column in the destination lakehouse
  • C. an Azure Data Factory pipeline that executes a dataflow to retrieve the minimum value of the OrderID column in the destination lakehouse
  • D. an Azure Data Factory pipeline that executes a dataflow to retrieve the maximum value of the OrderID column in the destination lakehouse
Reveal Solution Hide Solution   Discussion   41

Correct Answer: D 🗳️

Question #4 Topic 1

Case study -
This is a case study. Case studies are not timed separately. You can use as much exam time as you would like to complete each case. However, there may be additional case studies and sections on this exam. You must manage your time to ensure that you are able to complete all questions included on this exam in the time provided.
To answer the questions included in a case study, you will need to reference information that is provided in the case study. Case studies might contain exhibits and other resources that provide more information about the scenario that is described in the case study. Each question is independent of the other questions in this case study.
At the end of this case study, a review screen will appear. This screen allows you to review your answers and to make changes before you move to the next section of the exam. After you begin a new section, you cannot return to this section.

To start the case study -
To display the first question in this case study, click the Next button. Use the buttons in the left pane to explore the content of the case study before you answer the questions. Clicking these buttons displays information such as business requirements, existing environment, and problem statements. If the case study has an All Information tab, note that the information displayed is identical to the information displayed on the subsequent tabs. When you are ready to answer a question, click the Question button to return to the question.

Overview -
Contoso, Ltd. is a US-based health supplements company. Contoso has two divisions named Sales and Research. The Sales division contains two departments named Online Sales and Retail Sales. The Research division assigns internally developed product lines to individual teams of researchers and analysts.

Existing Environment -

Identity Environment -
Contoso has a Microsoft Entra tenant named contoso.com. The tenant contains two groups named ResearchReviewersGroup1 and ResearchReviewersGroup2.

Data Environment -
Contoso has the following data environment:
The Sales division uses a Microsoft Power BI Premium capacity.
The semantic model of the Online Sales department includes a fact table named Orders that uses Import made. In the system of origin, the OrderID value represents the sequence in which orders are created.
The Research department uses an on-premises, third-party data warehousing product.
Fabric is enabled for contoso.com.
An Azure Data Lake Storage Gen2 storage account named storage1 contains Research division data for a product line named Productline1. The data is in the delta format.
A Data Lake Storage Gen2 storage account named storage2 contains Research division data for a product line named Productline2. The data is in the CSV format.

Requirements -

Planned Changes -
Contoso plans to make the following changes:
Enable support for Fabric in the Power BI Premium capacity used by the Sales division.
Make all the data for the Sales division and the Research division available in Fabric.
For the Research division, create two Fabric workspaces named Productline1ws and Productine2ws.
In Productline1ws, create a lakehouse named Lakehouse1.
In Lakehouse1, create a shortcut to storage1 named ResearchProduct.

Data Analytics Requirements -
Contoso identifies the following data analytics requirements:
All the workspaces for the Sales division and the Research division must support all Fabric experiences.
The Research division workspaces must use a dedicated, on-demand capacity that has per-minute billing.
The Research division workspaces must be grouped together logically to support OneLake data hub filtering based on the department name.
For the Research division workspaces, the members of ResearchReviewersGroup1 must be able to read lakehouse and warehouse data and shortcuts by using SQL endpoints.
For the Research division workspaces, the members of ResearchReviewersGroup2 must be able to read lakehouse data by using Lakehouse explorer.
All the semantic models and reports for the Research division must use version control that supports branching.

Data Preparation Requirements -
Contoso identifies the following data preparation requirements:
The Research division data for Productline1 must be retrieved from Lakehouse1 by using Fabric notebooks.
All the Research division data in the lakehouses must be presented as managed tables in Lakehouse explorer.

Semantic Model Requirements -
Contoso identifies the following requirements for implementing and managing semantic models:
The number of rows added to the Orders table during refreshes must be minimized.
The semantic models in the Research division workspaces must use Direct Lake mode.

General Requirements -
Contoso identifies the following high-level requirements that must be considered for all solutions:
Follow the principle of least privilege when applicable.
Minimize implementation and maintenance effort when possible.
Which syntax should you use in a notebook to access the Research division data for Productline1?

  • A. spark.read.format(“delta”).load(“Tables/productline1/ResearchProduct”)
  • B. spark.sql(“SELECT * FROM Lakehouse1.ResearchProduct ”)
  • C. external_table(‘Tables/ResearchProduct)
  • D. external_table(ResearchProduct)
Reveal Solution Hide Solution   Discussion   31

Correct Answer: B 🗳️

file Viewing page 1 out of 43 pages.
Viewing questions 1-4 out of 169 questions
Next Questions
Browse atleast 50% to increase passing rate cup
Community vote distribution
A (35%)
C (25%)
B (20%)
Other
Most Voted
A voting comment increases the vote count for the chosen answer by one.

Upvoting a comment with a selected answer will also increase the vote count towards that answer by one. So if you see a comment that you already agree with, you can upvote it instead of posting a new comment.
Loading ...
exam
Someone Bought Contributor Access for:
SY0-701
London, 1 minute ago