Your retail company wants to predict customer churn using historical purchase data stored in BigQuery. The dataset includes customer demographics, purchase history, and a label indicating whether the customer churned or not. You want to build a machine learning model to identify customers at risk of churning. You need to create and train a logistic regression model for predicting customer churn, using the customer_data table with the churned column as the target label. Which BigQuery ML query should you use?
Correct Answer:
B
🗳️
Your company has several retail locations. Your company tracks the total number of sales made at each location each day. You want to use SQL to calculate the weekly moving average of sales by location to identify trends for each store. Which query should you use?
Correct Answer:
C
🗳️
Your company is building a near real-time streaming pipeline to process JSON telemetry data from small appliances. You need to process messages arriving at a Pub/Sub topic, capitalize letters in the serial number field, and write results to BigQuery. You want to use a managed service and write a minimal amount of code for underlying transformations. What should you do?
Correct Answer:
C
🗳️
You want to process and load a daily sales CSV file stored in Cloud Storage into BigQuery for downstream reporting. You need to quickly build a scalable data pipeline that transforms the data while providing insights into data quality issues. What should you do?
Correct Answer:
A
🗳️