exam questions

Exam AWS Certified Machine Learning Engineer - Associate MLA-C01 All Questions

View all questions & answers for the AWS Certified Machine Learning Engineer - Associate MLA-C01 exam

Exam AWS Certified Machine Learning Engineer - Associate MLA-C01 topic 1 question 80 discussion

An ML engineer is developing a fraud detection model by using the Amazon SageMaker XGBoost algorithm. The model classifies transactions as either fraudulent or legitimate.
During testing, the model excels at identifying fraud in the training dataset. However, the model is inefficient at identifying fraud in new and unseen transactions.
What should the ML engineer do to improve the fraud detection for new transactions?

  • A. Increase the learning rate.
  • B. Remove some irrelevant features from the training dataset.
  • C. Increase the value of the max_depth hyperparameter.
  • D. Decrease the value of the max_depth hyperparameter.
Show Suggested Answer Hide Answer
Suggested Answer: D 🗳️

Comments

Chosen Answer:
This is a voting comment (?). It is better to Upvote an existing comment if you don't have anything to add.
Switch to a voting comment New
Saransundar
3 months ago
Selected Answer: D
This is the scenario of overfitting where it works well with trained data and not with new data. Reducing the max_depth hyperparameter makes the model less complex, helping it generalize better to new data.
upvoted 2 times
...
Community vote distribution
A (35%)
C (25%)
B (20%)
Other
Most Voted
A voting comment increases the vote count for the chosen answer by one.

Upvoting a comment with a selected answer will also increase the vote count towards that answer by one. So if you see a comment that you already agree with, you can upvote it instead of posting a new comment.

SaveCancel
Loading ...
exam
Someone Bought Contributor Access for:
SY0-701
London, 1 minute ago