exam questions

Exam AWS Certified Machine Learning Engineer - Associate MLA-C01 All Questions

View all questions & answers for the AWS Certified Machine Learning Engineer - Associate MLA-C01 exam

Exam AWS Certified Machine Learning Engineer - Associate MLA-C01 topic 1 question 32 discussion

A financial company receives a high volume of real-time market data streams from an external provider. The streams consist of thousands of JSON records every second.
The company needs to implement a scalable solution on AWS to identify anomalous data points.
Which solution will meet these requirements with the LEAST operational overhead?

  • A. Ingest real-time data into Amazon Kinesis data streams. Use the built-in RANDOM_CUT_FOREST function in Amazon Managed Service for Apache Flink to process the data streams and to detect data anomalies.
  • B. Ingest real-time data into Amazon Kinesis data streams. Deploy an Amazon SageMaker endpoint for real-time outlier detection. Create an AWS Lambda function to detect anomalies. Use the data streams to invoke the Lambda function.
  • C. Ingest real-time data into Apache Kafka on Amazon EC2 instances. Deploy an Amazon SageMaker endpoint for real-time outlier detection. Create an AWS Lambda function to detect anomalies. Use the data streams to invoke the Lambda function.
  • D. Send real-time data to an Amazon Simple Queue Service (Amazon SQS) FIFO queue. Create an AWS Lambda function to consume the queue messages. Program the Lambda function to start an AWS Glue extract, transform, and load (ETL) job for batch processing and anomaly detection.
Show Suggested Answer Hide Answer
Suggested Answer: A 🗳️

Comments

Chosen Answer:
This is a voting comment (?). It is better to Upvote an existing comment if you don't have anything to add.
Switch to a voting comment New
Saransundar
1 month, 2 weeks ago
Selected Answer: A
Option A High-volume real-time: Kinesis Data Streams Scalable: Managed Apache Flink Anomaly detection: RANDOM_CUT_FOREST Low overhead: Fully managed services
upvoted 2 times
...
GiorgioGss
1 month, 3 weeks ago
Selected Answer: A
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest.html "Detects anomalies in your data stream."
upvoted 2 times
...
Community vote distribution
A (35%)
C (25%)
B (20%)
Other
Most Voted
A voting comment increases the vote count for the chosen answer by one.

Upvoting a comment with a selected answer will also increase the vote count towards that answer by one. So if you see a comment that you already agree with, you can upvote it instead of posting a new comment.

SaveCancel
Loading ...
exam
Someone Bought Contributor Access for:
SY0-701
London, 1 minute ago